72 research outputs found

    Exploring the Eating Disorder Examination Questionnaire, Clinical Impairment Assessment, and Autism Quotient to Identify Eating Disorder Vulnerability: A Cluster Analysis

    Get PDF
    Eating disorders are very complicated and many factors play a role in their manifestation. Furthermore, due to the variability in diagnosis and symptoms, treatment for an eating disorder is unique to the individual. As a result, there are numerous assessment tools available, which range from brief survey questionnaires to in-depth interviews conducted by a professional. One of the many benefits to using machine learning is that it offers new insight into datasets that researchers may not previously have, particularly when compared to traditional statistical methods. The aim of this paper was to employ k-means clustering to explore the Eating Disorder Examination Questionnaire, Clinical Impairment Assessment, and Autism Quotient scores. The goal is to identify prevalent cluster topologies in the data, using the truth data as a means to validate identified groupings. Our results show that a model with k = 2 performs the best and clustered the dataset in the most appropriate way. This matches our truth data group labels, and we calculated our model’s accuracy at 78.125%, so we know that our model is working well. We see that the Eating Disorder Examination Questionnaire (EDE-Q) and Clinical Impairment Assessment (CIA) scores are, in fact, important discriminators of eating disorder behavior

    Exploring the Efficacy of Transfer Learning in Mining Image-Based Software Artifacts

    Get PDF
    Transfer learning allows us to train deep architectures requiring a large number of learned parameters, even if the amount of available data is limited, by leveraging existing models previously trained for another task. Here we explore the applicability of transfer learning utilizing models pre-trained on non-software engineering data applied to the problem of classifying software UML diagrams. Our experimental results show training reacts positively to transfer learning as related to sample size, even though the pre-trained model was not exposed to training instances from the software domain. We contrast the transferred network with other networks to show its advantage on different sized training sets, which indicates that transfer learning is equally effective to custom deep architectures when large amounts of training data is not available

    Exploring the Applicability of Low‑Shot Learning in Mining Software Repositories

    Get PDF
    Background: Despite the well-documented and numerous recent successes of deep learning, the application of standard deep architectures to many classification problems within empirical software engineering remains problematic due to the large volumes of labeled data required for training. Here we make the argument that, for some problems, this hurdle can be overcome by taking advantage of low-shot learning in combination with simpler deep architectures that reduce the total number of parameters that need to be learned. Findings: We apply low-shot learning to the task of classifying UML class and sequence diagrams from Github, and demonstrate that surprisingly good performance can be achieved by using only tens or hundreds of examples for each category when paired with an appropriate architecture. Using a large, off-the-shelf architecture, on the other hand, doesn’t perform beyond random guessing even when trained on thousands of samples. Conclusion: Our findings suggest that identifying problems within empirical software engineering that lend themselves to low-shot learning could accelerate the adoption of deep learning algorithms within the empirical software engineering community

    Learning in the Machine: To Share or Not to Share?

    Get PDF
    Weight-sharing is one of the pillars behind Convolutional Neural Networks and their successes. However, in physical neural systems such as the brain, weight-sharing is implausible. This discrepancy raises the fundamental question of whether weight-sharing is necessary. If so, to which degree of precision? If not, what are the alternatives? The goal of this study is to investigate these questions, primarily through simulations where the weight-sharing assumption is relaxed. Taking inspiration from neural circuitry, we explore the use of Free Convolutional Networks and neurons with variable connection patterns. Using Free Convolutional Networks, we show that while weight-sharing is a pragmatic optimization approach, it is not a necessity in computer vision applications. Furthermore, Free Convolutional Networks match the performance observed in standard architectures when trained using properly translated data (akin to video). Under the assumption of translationally augmented data, Free Convolutional Networks learn translationally invariant representations that yield an approximate form of weight-sharing

    Learning in the Machine: To Share or Not to Share?

    Get PDF
    Weight-sharing is one of the pillars behind Convolutional Neural Networks and their successes. However, in physical neural systems such as the brain, weight-sharing is implausible. This discrepancy raises the fundamental question of whether weight-sharing is necessary. If so, to which degree of precision? If not, what are the alternatives? The goal of this study is to investigate these questions, primarily through simulations where the weight-sharing assumption is relaxed. Taking inspiration from neural circuitry, we explore the use of Free Convolutional Networks and neurons with variable connection patterns. Using Free Convolutional Networks, we show that while weight-sharing is a pragmatic optimization approach, it is not a necessity in computer vision applications. Furthermore, Free Convolutional Networks match the performance observed in standard architectures when trained using properly translated data (akin to video). Under the assumption of translationally augmented data, Free Convolutional Networks learn translationally invariant representations that yield an approximate form of weight sharing

    Forecasting Vegetation Health in the MENA Region by Predicting Vegetation Indicators with Machine Learning Models

    Get PDF
    Machine learning (ML) techniques can be applied to predict and monitor drought conditions due to climate change. Predicting future vegetation health indicators (such as EVI, NDVI, and LAI) is one approach to forecast drought events for hotspots (e.g. Middle East and North Africa (MENA) regions). Recently, ML models were implemented to predict EVI values using parameters such as land types, time series, historical vegetation indices, land surface temperature, soil moisture, evapotranspiration etc. In this work, we collected the MODIS atmospherically corrected surface spectral reflectance imagery with multiple vegetation related indices for modeling and evaluation of drought conditions in the MENA region. These models are built by a total of 4556 and 519 normalized samples for training and testing purposes, respectively and with 51820 samples used for model evaluation. Models such as multilinear regression, penalized regression models, support vector regression (SVR), neural network, instance-based learning K-nearest neighbor (KNN) and partial least squares were implemented to predict future values of EVI. The models show effective performance in predicting EVI values (R2\u3e 0.95) in the testing and (R2\u3e 0.93) in the evaluation process

    Towards QoS-Based Embedded Machine Learning

    Get PDF
    Due to various breakthroughs and advancements in machine learning and computer architectures, machine learning models are beginning to proliferate through embedded platforms. Some of these machine learning models cover a range of applications including computer vision, speech recognition, healthcare efficiency, industrial IoT, robotics and many more. However, there is a critical limitation in implementing ML algorithms efficiently on embedded platforms: the computational and memory expense of many machine learning models can make them unsuitable in resource-constrained environments. Therefore, to efficiently implement these memory-intensive and computationally expensive algorithms in an embedded computing environment, innovative resource management techniques are required at the hardware, software and system levels. To this end, we present a novel quality-of-service based resource allocation scheme that uses feedback control to adjust compute resources dynamically to cope with the varying and unpredictable workloads of ML applications while still maintaining an acceptable level of service to the user. To evaluate the feasibility of our approach we implemented a feedback control scheduling simulator that was used to analyze our framework under various simulated workloads. We also implemented our framework as a Linux kernel module running on a virtual machine as well as a Raspberry Pi 4 single board computer. Results illustrate that our approach was able to maintain a sufficient level of service without overloading the processor as well as providing an energy savings of almost 20% as compared to the native resource management in Linux

    On-Device Deep Learning Inference for System-on-Chip (SoC) Architectures

    Get PDF
    As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic execution required for embedded, and potentially safety-critical, applications at the edge. Despite this, studies considering the integration of real-time operating systems, specialized hardware, and machine learning/deep learning algorithms remain limited. In particular, better mechanisms for real-time scheduling in the context of machine learning applications will prove to be critical as these technologies move to the edge. In order to address some of these challenges, we present a resource management framework designed to provide a dynamic on-device approach to the allocation and scheduling of limited resources in a real-time processing environment. These types of mechanisms are necessary to support the deterministic behavior required by the control components contained in the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability analysis to a large set of randomly generated simulated task sets and then verified the most time critical applications, such as the control tasks which maintained low-latency deterministic behavior even during off-nominal conditions. The practicality of our scheduling framework was demonstrated by integrating it into a commercial real-time operating system (VxWorks) then running a typical deep learning image processing application to perform simple object detection. The results indicate that our proposed resource management framework can be leveraged to facilitate integration of machine learning algorithms with real-time operating systems and embedded platforms, including widely-used, industry-standard real-time operating systems

    Coral Reef Change Detection in Remote Pacific Islands Using Support Vector Machine Classifiers

    Get PDF
    Despite the abundance of research on coral reef change detection, few studies have been conducted to assess the spatial generalization principles of a live coral cover classifier trained using remote sensing data from multiple locations. The aim of this study is to develop a machine learning classifier for coral dominated benthic cover-type class (CDBCTC) based on ground truth observations and Landsat images, evaluate the performance of this classifier when tested against new data, then deploy the classifier to perform CDBCTC change analysis of multiple locations. The proposed framework includes image calibration, support vector machine (SVM) training and tuning, statistical assessment of model accuracy, and temporal pixel-based image dierencing. Validation of the methodology was performed by cross-validation and train/test split using ground truth observations of benthic cover from four dierent reefs. These four locations (Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island) as well as two additional locations (Kiritimati Island and Tabuaeran Island) were then evaluated for CDBCTC change detection. The in-situ training accuracy against ground truth observations for Palmyra Atoll, Kingman Reef, Baker Island Atoll, and Howland Island were 87.9%, 85.7%, 69.2%, and 82.1% respectively. The classifier attained generalized accuracy scores of 78.8%, 81.0%, 65.4%, and 67.9% for the respective locations when trained using ground truth observations from neighboring reefs and tested against the local ground truth observations of each reef. The classifier was trained using the consolidated ground truth data of all four sites and attained a cross-validated accuracy of 75.3%. The CDBCTC change detection analysis showed a decrease in CDBCTC of 32% at Palmyra Atoll, 25% at Kingman Reef, 40% at Baker Island Atoll, 25% at Howland Island, 35% at Tabuaeran Island, and 43% at Kiritimati Island. This research establishes a methodology for developing a robust classifier and the associated Controlled Parameter Cross-Validation (CPCV) process for evaluating how well the model will generalize to new data. It is an important step for improving the scientific understanding of temporal change within coral reefs around the globe

    A Large-Scale Sentiment Analysis of Tweets Pertaining to the 2020 US Presidential Election

    Get PDF
    We capture the public sentiment towards candidates in the 2020 US Presidential Elections, by analyzing 7.6 million tweets sent out between October 31st and November 9th, 2020. We apply a novel approach to first identify tweets and user accounts in our database that were later deleted or suspended from Twitter. This approach allows us to observe the sentiment held for each presidential candidate across various groups of users and tweets: accessible tweets and accounts, deleted tweets and accounts, and suspended or inaccessible tweets and accounts. We compare the sentiment scores calculated for these groups and provide key insights into the differences. Most notably, we show that deleted tweets, posted after the Election Day, were more favorable to Joe Biden, and the ones posted leading to the Election Day, were more positive about Donald Trump. Also, the older a Twitter account was, the more positive tweets it would post about Joe Biden. The aim of this study is to highlight the importance of conducting sentiment analysis on all posts captured in real time, including those that are now inaccessible, in determining the true sentiments of the opinions around the time of an event
    • …
    corecore